
# 从阿里云镜像仓库拉取(国内)
docker pull registry.cn-chengdu.aliyuncs.com/tu1h/wechotd:alpine
docker tag registry.cn-chengdu.aliyuncs.com/tu1h/wechotd:alpine gewe
# 创建数据目录并启动服务
mkdir -p gewechat/data
docker run -itd -v ./gewechat/data:/root/temp -p 2531:2531 -p 2532:2532 --restart=always --name=gewe gewe
gewechat相关配置如下,注意channel_type设置为gewechat
{
"channel_type": "gewechat", # 通道类型设置为gewechat
"gewechat_token": "", # 首次登录可留空,自动获取
"gewechat_app_id": "", # 首次登录可留空,自动获取
"gewechat_base_url": "http://本机ip:2531/v2/api", # gewechat服务API地址
"gewechat_callback_url": "http://本机ip:9919/v2/api/callback/collect", # 回调地址
"gewechat_download_url": "http://本机ip:2532/download" # 文件下载地址
}
本机ip是指局域网ip或公网ip,可通过
ipconfig
或ifconfig
命令查看对与gewechat_callback_url,ip不能填
127.0.0.1
或localhost
,否则会报错
9919
端口是dify-on-wechat服务监听的端口,如果是用docker启动的dify-on-wechat服务,请把9919
端口映射到宿主机
请务必查看详细配置: gewechat接入文档
python app.py
启动成功后,可以看到如下日志信息,注意token和appid会自动保存到config.json,无需手动保存
⚠️如果遇到gewechat创建设备失败,unexpected EOF错误,请排查网络是否是以下情况:
1️⃣代理:请关闭代理后尝试;
2️⃣国外服务器;
3️⃣回调地址为外网;
4️⃣异地服务器
新增用户信息对接dify的能力,会把用户id、用户名称、群聊id、群聊名称信息传递给dify,搭配 gewechat_channel 提供的wxid与chatroomid, 可以在dify中识别出每个用户,实现个性化服务。详细教程请查看:用户信息对接dify
- 有封号风险,请使用企业微信小号测试
- 在登录旧版本的企业微信时可能会出现企业微信版本过低,无法登录情况,参考issue1525,请尝试更换其他企业微信号重试
参考手摸手教你把 Dify 接入微信生态,下载本项目,安装python依赖
由于ntwork的安装源不是很稳定,可以下载对应的whl文件,使用whl文件离线安装ntwork
首先需要查看你的python版本,在命令行中输入python查看版本信息,然后在ntwork-whl目录下找到对应的whl文件,运行pip install xx.whl
安装ntwork依赖,注意”xx.whl”更换为whl文件的实际路径。
例如我的python版本信息为
“Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)]”
可以看到python版本是3.8.5,并且是AMD64,所以对应的whl文件为ntwork-0.1.3-cp38-cp38-win_amd64.whl,需要执行如下命令安装
pip install your-path/ntwork-0.1.3-cp38-cp38-win_amd64.whl
我们在项目根目录创建名为config.json的文件,文件内容如下,请根据教程参考手摸手教你把 Dify 接入微信生态获取dify_api_base、dify_api_key、dify_app_type信息,注意channel_type填写为 wework
{
"dify_api_base": "https://api.dify.ai/v1",
"dify_api_key": "app-xxx",
"dify_app_type": "chatbot",
"channel_type": "wework",
"model": "dify",
"single_chat_prefix": [""],
"single_chat_reply_prefix": "",
"group_chat_prefix": ["@bot"],
"group_name_white_list": ["ALL_GROUP"]
}
务必提前在电脑扫码登录企业微信
运行如下命令启动机器人
python app.py
我们可以看到终端输出如下信息,等待wework程序初始化完成,最后启动成功~
[INFO][2024-04-30 21:16:04][wework_channel.py:185] - 等待登录······
[INFO][2024-04-30 21:16:05][wework_channel.py:190] - 登录信息:>>>user_id:xxx>>>>>>>>name:
[INFO][2024-04-30 21:16:05][wework_channel.py:191] - 静默延迟60s,等待客户端刷新数据,请勿进行任何操作······
[INFO][2024-04-30 21:17:05][wework_channel.py:224] - wework程序初始化完成········
4. 集成JinaSum插件
使用Jina Reader和ChatGPT支持总结公众号、小红书、知乎等分享卡片链接,配置详情请查看JinaSum
5. 新增CustomDifyApp插件
支持根据群聊名称关键词自动切换不同的Dify应用,也支持为单聊配置专门的Dify应用。
例如,在与AI助手进行私聊时,自动调用企业内部员工助手Dify应用;在xx平台技术支持群中@AI助手时,则自动切换至该平台的技术支持Dify应用。
配置详情请查看 CustomDifyApp
dify官网已正式上线工作流模式,可以导入本项目下的dsl文件快速创建工作流进行测试。工作流输入变量名称十分灵活,对于工作流类型的应用,本项目约定工作流的输入变量命名为query
,输出变量命名为text
。
(ps: 感觉工作流类型应用不太适合作为聊天机器人,现在它还没有会话的概念,需要自己管理上下文。但是它可以调用各种工具,通过http请求和外界交互,适合执行业务逻辑复杂的任务;它可以导入导出工作流dsl文件,方便分享移植。也许以后dsl文件+配置文件就可以作为本项目的一个插件。)
-
请参照快速开始步骤克隆源码并安装依赖
-
按照下方coze api config.json示例文件进行配置 以下是对默认配置的说明,可根据需要进行自定义修改(如果复制下方的示例内容,请去掉注释)
# coze config.json文件内容示例
{
"coze_api_base": "https://api.coze.cn", # coze base url
"coze_api_key": "xxx", # coze api key
"coze_bot_id": "xxx", # 根据url获取coze_bot_id https://www.coze.cn/space/{space_id}/bot/{bot_id}
"channel_type": "gewechat", # 通道类型,当前为个人微信
"model": "coze", # 模型名称,当前对应coze平台
"single_chat_prefix": [""], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "", # 私聊时自动回复的前缀,用于区分真人
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_name_white_list": ["ALL_GROUP"] # 机器人回复的群名称列表
}
上述示例文件是个人微信对接coze的极简配置,详细配置说明需要查看config.py,注意不要修改config.py中的值,config.py只是校验是否是有效的key,最终生效的配置请在config.json修改。
- 启动程序
python3 app.py # windows环境下该命令通常为 python app.py
dify语音相关配置如下,另外需要在dify应用中开启语音转文字以及文字转语音功能,注意语音功能需要安装ffmpeg依赖
{
"dify_api_base": "https://api.dify.ai/v1",
"dify_api_key": "app-xxx",
"dify_app_type": "chatbot",
"speech_recognition": true, # 是否开启语音识别
"voice_reply_voice": true, # 是否使用语音回复语音
"always_reply_voice": false, # 是否一直使用语音回复
"voice_to_text": "dify", # 语音识别引擎
"text_to_voice": "dify" # 语音合成引擎
}
⚠️注意:dify应用中开启语音转文字以及文字转语音功能,不是在工具中添加Audio(tts/asr),以0.15.1版本为例,具体路径是:你的dify应用-编排-调试与预览-开启功能增强 webapp 用户体验(底部)-开启语音转文字-开启文字转语音-发布后生效。老版本dify与新版不同,不在调试与预览中,而是左边编排工具下面。详细开启方法可查看issue #211
搭配 gewechat_channel 可以实现发送语音条功能,gewechat服务只能获取到20s以内的语音,所以你只能给bot发送20s以内的语音,但bot给你发送语音时无此限制。请查看gewechat接入文档
dify图片识别配置如下,另外需要在dify应用中开启图片上传与图片理解功能。使用方法为,先发送图片,然后在3分钟内发送关于图片的问题,注意先后顺序。
{
"dify_api_base": "https://api.dify.ai/v1",
"dify_api_key": "app-xxx",
"dify_app_type": "chatbot",
"image_recognition": true
}
接入非Dify机器人可参考原项目文档 chatgpt-on-wechat、项目搭建文档
Dify接入微信生态的详细教程请查看文章 手摸手教你把 Dify 接入微信生态
下文介绍如何快速接入Dify
进入Dify App 官网注册账号,创建一个应用并发布,然后在概览页面创建保存api密钥,同时记录api url,一般为https://api.dify.ai/v1
支持 Linux、MacOS、Windows 系统(可在Linux服务器上长期运行),同时需安装 Python
。
python推荐3.8以上版本,已在ubuntu测试过3.11.6版本可以成功运行。
(1) 克隆项目代码:
git clone https://github.com/hanfangyuan4396/dify-on-wechat
cd dify-on-wechat/
(2) 安装核心依赖 (必选):
能够使用
itchat
创建机器人,并具有文字交流功能所需的最小依赖集合。
pip3 install -r requirements.txt # 国内可以在该命令末尾添加 "-i https://mirrors.aliyun.com/pypi/simple" 参数,使用阿里云镜像源安装依赖
(3) 拓展依赖 (可选,建议安装):
pip3 install -r requirements-optional.txt # 国内可以在该命令末尾添加 "-i https://mirrors.aliyun.com/pypi/simple" 参数,使用阿里云镜像源安装依赖
如果某项依赖安装失败可注释掉对应的行再继续
配置文件的模板在根目录的config-template.json
中,需复制该模板创建最终生效的 config.json
文件:
cp config-template.json config.json
然后在config.json
中填入配置,以下是对默认配置的说明,可根据需要进行自定义修改(如果复制下方的示例内容,请去掉注释, 务必保证正确配置dify_app_type):
# dify config.json文件内容示例
{
"dify_api_base": "https://api.dify.ai/v1", # dify base url
"dify_api_key": "app-xxx", # dify api key
"dify_app_type": "chatbot", # dify应用类型 chatbot(对应聊天助手)/agent(对应Agent)/workflow(对应工作流),默认为chatbot
"dify_convsersation_max_messages": 5, # dify目前不支持设置历史消息长度,暂时使用超过最大消息数清空会话的策略,缺点是没有滑动窗口,会突然丢失历史消息,当设置的值小于等于0,则不限制历史消息长度
"channel_type": "wx", # 通道类型,当前为个人微信
"model": "dify", # 模型名称,当前对应dify平台
"single_chat_prefix": [""], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "", # 私聊时自动回复的前缀,用于区分真人
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_name_white_list": ["ALL_GROUP"], # 机器人回复的群名称列表
"image_recognition": true, # 是否开启图片理解功能,需保证对应的dify应用已开启视觉功能
"speech_recognition": true, # 是否开启语音识别
"voice_reply_voice": true, # 是否使用语音回复语音
"always_reply_voice": false, # 是否一直使用语音回复
"voice_to_text": "dify", # 语音识别引擎
"text_to_voice": "dify" # 语音合成引擎
}
上述示例文件是个人微信对接dify的极简配置,详细配置说明需要查看config.py,注意不要修改config.py中的值,config.py只是校验是否是有效的key,最终生效的配置请在config.json修改。
如果是开发机 本地运行,直接在项目根目录下执行:
python3 app.py # windows环境下该命令通常为 python app.py
终端输出二维码后,使用微信进行扫码,当输出 “Start auto replying” 时表示自动回复程序已经成功运行了(注意:用于登录的微信需要在支付处已完成实名认证)。扫码登录后你的账号就成为机器人了,可以在微信手机端通过配置的关键词触发自动回复 (任意好友发送消息给你,或是自己发消息给好友),参考#142。
使用nohup命令在后台运行程序:
nohup python3 app.py & tail -f nohup.out # 在后台运行程序并通过日志输出二维码
扫码登录后程序即可运行于服务器后台,此时可通过 ctrl+c
关闭日志,不会影响后台程序的运行。使用 ps -ef | grep app.py | grep -v grep
命令可查看运行于后台的进程,如果想要重新启动程序可以先 kill
掉对应的进程。日志关闭后如果想要再次打开只需输入 tail -f nohup.out
。此外,scripts
目录下有一键运行、关闭程序的脚本供使用。
多账号支持: 将项目复制多份,分别启动程序,用不同账号扫码登录即可实现同时运行。
特殊指令: 用户向机器人发送 #reset 即可清空该用户的上下文记忆。
⚠️使用docker
或者docker-compose
部署时,必须先拉取最新源码,否则会报错⚠️
cd dify-on-wechat/docker # 进入docker目录
cp ../config-template.json ../config.json
docker compose up -d # 启动docker容器
docker logs -f dify-on-wechat # 查看二维码并登录
数据统计
相关导航


gofrp

TablePlus

酒馆

gewechat-python

AutoRag

ComfyUI
